Warm Up

What points are the mean and median closest to?

Fri. Sept. 16

Objective: SWBAT locate data points in a set using z-scores and cumulative frequency charts.

Agenda:

- Warm Up
- Notes
- Practice
- Reflection

Notes: percentiles

The *p* percentile of a distribution is the value greater than p% of the observations.

For example, the median is the 50th percentile.

to find the percentile of a data point:

p = (# of values less than the point) (# of values in the set of observations)

examples: pg. 85

Notes: Cumulative Relative Frequency Graphs

Also known as "ogives," these can be useful if you want a graph that lets you find the percentile of a given value.

Before you can make an ogive, the absolute frequencies must be known.

Making ogives

- 1. Find the cumulative frequency by adding up the absolute frequencies
- 2. Divide each by the total to get the cumulative relative frequencies
- 3. Graph (Excel/Google: calculate first, then do it as a line graph)

Z-Scores

Z-scores are a way to compare individuals to an average, or compare individuals from one sample to those in another.

Converting to z-scores is called *standardizing* and is done like this:

$$z = \frac{x - mean}{standard deviation}$$

z can be positive or negative, and measures how far above or below a number is from the mean, in units of standard deviations.

Example

1. Calculate z for a test score of 80 if the mean was 76 and the standard deviation was 4. Is this surprising?

2. Compare #1 to a test score of 75 if the mean was 70 and the standard deviation was 3. Who did better, relatively speaking?

$$Z = \frac{75 - 76}{3} = \frac{5}{3} = 1.67$$

Practice

Work on the practice problems.

What is an advantage of the cumulative relative frequency graph (ogive)?